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Despite many studies on the scaling and geometrical properties of fracture systems, much less attention
has been paid to analysing their spatial characteristics. At a well exposed section at George Gill, Appleby,
we investigated the spatial heterogeneity in deformation band orientations in a high porosity sandstone
using bootstrap, variogram and hierarchical analysis methods. At metre-scales the structures displayed
multimodal orientation patterns with orthorhombic symmetry whereas at 20 m scales they appeared
bimodal. Our analysis shows that this situation arises due to a combination of small-scale noise super-
imposed on a regional trend related to the presence of a nearby major fault structure. We suggest that
this type of geospatial analysis can be used as a general tool to investigate spatial heterogeneity in
structural systems. We also suggest that these types of granularity and aliasing effect impact the
prediction and modelling of rock properties and they therefore warrant further investigation.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Our knowledge of the three dimensional (3D) characteristics of
fracture networks is limited due to their inherent complexity,
which results from their initiation and mutual interaction, and from
constraints imposed by the incomplete sampling of rock volumes.
The prediction of rock properties such as permeability, strength,
seismic velocity and anisotropy in the Earth’s subsurface, however,
requires a complete understanding of the geometry and spatial
attributes of fracture networks (e.g. Crampin et al., 1980; Barton
and Zoback, 1992; Laubach et al., 2004; Philip et al., 2005; Ortega
et al., 2006). Currently the model inputs for fractured hydrocarbon
reservoirs and aquifers necessitate the characterization of fracture
geometries, sizes and spatial properties at a range of scales (Fig. 1).
These data are generated from well logs and core (one dimensional
(1D), centimetre resolution), seismic attribute mapping (two
dimensional (2D), tens-of-metres), and analogue outcrops (2D data
at centimetre scales) (e.g. Gillespie et al., 1993). In this paper, we
present a methodology that can be used to investigate the spatial
heterogeneity of structures in a deformed host rock. Where we use
the term ‘fracture’, we are referring in a general sense to any planar
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discontinuous surfaces or zones (such as joints, faults and defor-
mation bands) generated by brittle deformation processes. The
example given in this paper is a dataset collected from a high
porosity sandstone outcrop and here we use the term ‘deformation
band’ in a specific sense to refer to structures in the case study.

The attributes of fracture systems visible at different resolutions
typically form a ‘hierarchy’ (Fig. 2). ‘Granularity’ in a general sense
refers to the relative size, scale, level of detail or depth of pene-
tration that characterizes an object or activity (Zadeh, 1979). In this
study, we illustrate the importance of granularity effects in ana-
lysing a fracture dataset collected from a natural system. This effect
is not the same as scaling which is the extent to which structures
are similar at different scales of observation and has been widely
investigated for various dimensional and spatial properties for
fractures (c.f. Bonnet et al., 2001).

The problem we initially encountered was that when viewed at
the first-order hierarchical level (the complete deformation band
dataset in this example), the orientation patterns seemed relatively
simple, i.e. two clusters that are NE- and SW-dipping respectively.
However, in most parts of the outcrop at metre-scale (a lower
hierarchical level), we observed more complexity, with three or
more orientation clusters developed.

In this paper, using a variety of statistical analyses, we demon-
strate that substantial local scale variation in orientation is super-
imposed on overall trends at the scale of the outcrop as a whole.
Our results show that spatial heterogeneity in fracture orientations
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Fig. 1. Schematic diagram illustrating the techniques used to study fracture networks
at different scales. All this information is required to predict the complete fracture
network in three dimensions in the subsurface.
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can be delineated by analysing the fractures at different resolutions,
provided the locations of individual structures are also recorded. In
our example, if the data are averaged at a coarse scale then
important characteristics of the fracture system remain hidden.
This granularity effect causes a type of spatial aliasing that is known
in other systems (e.g. seismic processing, time series analysis) and
requires explicit understanding if more realistic prediction of
natural fracture network geometries is to be successfully made in
the subsurface.

2. Geological background

We studied an outcrop of fractured aeolian red sandstone that
occurs in the Permo-Trias Vale of Eden half graben at George Gill,
Appleby, located east of the English Lake District and 20 km SE of
Penrith (Fig. 3, NY716190), (Versey, 1938). Cataclastic deformation
bands and deformation band clusters are well developed along
both sides of a stream valley. Anastomosing deformation bands are
ubiquitous and are best displayed on a 40-m long, south-facing cliff
on the northern side of the valley (Figs. 3 and 4a). The host sand-
stone preserves widespread cross-bedding, is highly porous and
poorly cemented, whereas the deformation bands (and deforma-
tion band clusters) are much finer grained, better cemented, and
have lower porosity. As these low-porosity deformation bands can
act as preferential groundwater flow paths, the orientation, conti-
nuity and physical connectivity of the bands determines their
effectiveness as sealing or flow-reducing structures (Sigda et al.,
1999; Fossen et al., 2007).
Fig. 2. Schematic diagram illustrating the granularity of a sampling window system. The
sampling window sizes: the greater variety of colour at smaller scales compared with that
network that is sampled at different window sizes shown as black boxes.
Deformation band density changes abruptly approximately 20-
m from the eastern end of the cliff (Fig. 4a). A single deformation
band is a narrow zone of grain fragments (ca. 1 mm), representing
a single slip event with a small displacement; a deformation band
cluster is formed by coalescence of single deformation bands
(Aydin and Johnson, 1978). Both single deformation bands and
deformation band clusters display a diffuse bimodal distribution
pattern on stereonets (Fig. 4a and b). In the zone of low fracture
density toward the east, three (multimodal) sets of mutually cross-
cutting fractures in the form of single deformation bands can be
recognized in the field (Fig. 4b and c). They are similar to the arrays
of deformation bands in the Entrada and Navajo sandstones in
southeastern Utah, where the faults form a network that usually
has a rhombohedral pattern (e.g. Aydin and Reches, 1982; Shipton
and Cowie, 2001; Johansen and Fossen, 2008). In the high density
zone, the deformation band clusters almost obliterate the host rock
entirely (Fig. 4d). Viewed as a whole, the deformation band clusters
appear to be distributed into two broad groups (bimodal) striking
generally NW–SE and dipping moderately to steeply either SW or
NE (Fig. 4a). Sub-horizontal beds are offset across deformation
bands in the low density zone typically by 1–2 cm at most, and by
around 5 cm in the high density zone. Rare slickenlines found on
a fracture plane beneath the cave are dip-slip, plunging SW (Fig. 4a
and e). At other localities along Hilton Beck near Red Brow
(NY708201), 1 km NW from George Gill, slickenlines are more
commonly developed on the polished fault surfaces, and also show
a dip-slip normal sense (Fig. 3). Faults that exhibit slickenlines
around Hilton Beck and George Gill generally trend NW–SE, sug-
gesting a regional NE–SW extension.

At the microscale, the host rock consists of ca. 80% quartz and ca.
10% feldspar grains, most of which are rounded and loosely packed
(Fig. 5a). Cementation in the host rock is mainly due to pressure
solution that occurred along the contacts between adjacent grains.
In the inner zones of single (ca. 1 mm wide) deformation bands,
grains are rotated, ruptured and more tightly packed than in the
host rock (Fig. 5b). The offset for a given single deformation band is
generally not obvious as simple discontinuities with offset grain
fragments are absent. Slip surfaces can, however, occur within
bands or, more commonly, along or within zones of multiple
deformation bands, representing a more mature development
stage for the deformation bands (Fossen et al., 2007). In deforma-
tion band clusters (ca. 5 cm width), the original grains are inten-
sively brecciated to form very highly compacted cataclasites. Shear
colour maps show a hierarchical relationship between measurements from different
at larger scales illustrates greater variation. Lines on the right are a schematic fracture



Fig. 3. Regional geological map of the Penrith area showing the location of Appleby where Permian aeolian sandstone with basal brockrams (breccias) underlying thin-bedded
muddy sand (Hilton Series) and Triassic rocks (detailed map) is exposed (after Versey, 1938). (a) Locality a: a z 40 m long cliff with anatomising deformation bands in the northern
side of the stream valley at George Gill. (b) and (c) Outcrop-scale normal faults trending NW–SE along Hilton Beck shown on the detailed map preserve (see detailed map) expose
well-defined dip-slip slickenlines on the exposed fracture surfaces of the deformation bands.
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is localized in narrow zones (z1 mm width) (Fig. 5c). The charac-
teristics of the deformation bands from Appleby closely resemble
deformation bands described in other regions (e.g. Underhill and
Woodcock, 1987; Antonellini et al., 1994; Johansen and Fossen,
2008). Overall, in terms of deformation intensity, the deformation
band clusters are consistent with the three-fold division of fault
evolution in highly porous sandstones described by Aydin and
Johnson (1978).

3. Methodology and results

To investigate the spatial variability and directional anisotropy
in fracture datasets, each fracture orientation measurement is
described by its position in a geographic or a Cartesian reference
frame (Isaaks and Srivastava, 1989). Despite the large body of work
concerning the statistics of directional (orientation) data (e.g.
Fisher et al., 1987; Mardia and Jupp, 2000), spatial heterogeneity in
fracture datasets has not been considered in as great a detail. This
situation is surprising since systematic changes in fracture orien-
tations could, for example, indicate rotations in palaeostress axes
(e.g. Faulkner et al., 2006). More generally, an understanding of
fracture orientation with respect to spatial position in a rock unit is
part of a complete description of a fracture network.

In this study, we investigated 3 distinct aspects of spatial
heterogeneity in the deformation-band-orientation dataset: (1)
geometrical clustering; (2) spatial correlation; and (3) spatial varia-
tion. In this study, geometrical clustering refers to clusters in
deformation band orientations from location to location along the
outcrop. Spatial correlation describes the similarity of any two
orientation measurements separated by certain distances. Spatial
variation describes the change in orientation with spatial location.
We use three corresponding techniques to study each of these
distinct aspects: (1) bootstrapping; (2) semivariograms; and (3)
hierarchical analysis.

3.1. Data acquisition and manipulation

We collected approximately 950 deformation band orientations
in 1 m sized windows along a 1D scanline across the George Gill
outcrop to form a data log. The location of each sampling window is



Fig. 4. Deformation bands and deformation band clusters on the south-facing cliff at George Gill. (a) Overview of the cliff section showing the density change in the middle of the
outcrop with the low density zone of mainly single deformation bands on the right; the high density zone of mainly deformation band clusters on the left, and locations of insets c
and d shown. (b) Block diagram illustrating bimodal and multimodal fracture patterns. (c) Locally developed multimodal deformation with three sets of cross-cutting planes. These
different sets are correspondingly shown in open circles, dots and squares on the stereonets with mean values (below) for the different sets in triangles. (d) Fault plane with
slickenlines (shown in (e)) indicating dip-slip displacement. Two fault sets in open circles and dots are shown on the attached stereonets. All stereoplots are Schmidt projection,
lower hemisphere.
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defined by the distance from the east end of the cliff to the centre of
the window (Fig. 6a). Orientation datasets were collected in the
sample windows using a compass-clinometer moving sequentially
from east to west along the cliff (Fig. 6b). Measurements from the
same sampling window are allocated the same spatial location as
the window. Orientations were recorded directly onto digital
photographs using a Tablet PC (e.g. Clegg et al., 2006) to locate the
precise position of the measurement on the outcrop. The fracture
density is defined as the number of entire or partial traces recorded
in the 1�1 m sampling window. In the low density zone, all
accessible deformation bands were measured in a sampling
window so that the sample size reflects the fracture density
(Fig. 6c). In the high density zone, the occurrence of deformation
band clusters precluded accurately counting the number of bands
and establishing a complete set of orientation measurements. So,
a representative sample size was obtained by sufficiently collecting
Fig. 5. Thin sections of: (a) host rock, (b) inner zone
orientation data in a sampling window. Additionally, for curving
deformation bands, more than one measurement was taken to
record changes in orientation.

Deformation bands in the relatively homogeneous sandstone
exhibit a broadly conjugate pattern at the outcrop-scale, with two
diffuse clusters plotting in the NE and SW quadrants of the ster-
eonet (Fig. 4a). Therefore we subdivide the dataset into two major
sets (NE-dipping and SW-dipping sets) as a function of orientation.
To further resolve the correlation of changes in orientation to
spatial position, we statistically describe the spatial heterogeneity
of the orientation population for the bands.

3.2. Bootstrap analysis

Bootstrap analysis is a statistical method for estimating the
sampling distribution of an estimator by sampling with
s, and (c) localized shear in narrow zones. CPL.



Fig. 6. (a) Sketch section (looking N) of the cliff at George Gill showing a typical 1 m
sampling window, which was moved sequentially westward relative to the sample line
origin in the east (0 m). The curvilinear traces represent deformation bands/clusters
(b) Map view showing the scanline dotted along the cliff base. The liner traces
represent deformation bands/clusters. (c) Plot of deformation band density vs. distance
from the east end of the cliff showing that the density increases toward the western
end. The shaded area indicates zone of high density (generally > fractures 90m–2).
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replacement from the original sample (Efron, 1982). The technique
is particularly useful for analysing diffuse orientation data (Mardia
and Jupp, 2000). A simple diagram showing stereoplots of fracture
orientations versus their spatial location along a scanline can
resolve variations in datasets with large spatial heterogeneities (e.g.
Wilson et al., 2006). However, if the variation within a set of frac-
ture orientations is large, the spatial heterogeneity can be masked
as occurs at George Gill (Fig. 4a). Bootstrap analysis is a robust
technique that can recognize the spatial heterogeneity when such
variation occurs.

To investigate geometric clustering in the orientation datasets,
sequentially bootstrapped means are compared with randomly
bootstrapped means determined by using a moving window. A
‘moving window’ is defined as a sub-dataset made from measure-
ments adjacent to each other in the data log. We calculated the
vector mean (e.g. Mardia and Jupp, 2000) in a ‘moving window’
starting from the beginning of the data log, corresponding to the
east end of the cliff, and repeated the same operation on orientation
measurements working progressively toward the end of the data log
(corresponding to the west end of the cliff). Whereas in the field the
‘sampling window’ locations were stepped by 1 m increments, in
the bootstrap analysis, we use a ‘moving window’ with a step of one
orientation measurement in the data log to highlight planes of
similar orientations in a spatially correlated context. Finally, we
calculated the mean orientations using spherical data analysis
(Mardia and Jupp, 2000) of similar sized samples selected at random
from the whole dataset (i.e. ignoring the spatial position of the
measurements). This process was repeated many times, for a series
of different ‘moving window’ sizes. If spatial clustering exists in the
datasets, the sequentially bootstrapped means will show different
behaviour compared to the randomly bootstrapped means. This
difference is shown by plotting the means on stereonets (Fig. 7).

The relationship between the spatial position and the defor-
mation band orientation was also analyzed using a ‘moving
window bootstrap’: a simulation was launched in each ‘moving
window’ to generate pooled mean orientations that were colour-
coded from a greyscale (the colour is determined by the spatial
position of the ‘moving window’) to estimate the spatial variation
(Fig. 8). This simulation is somewhat analogous to the sampling
windows used in the field: orientations are sampled in a window
that moves across the datasets. However, unlike in the field, this
approach defines the window size using the number of orientation
data that occur immediately adjacent to each other to form a sub-
dataset in which the random sampling is applied for a large number
of repetitions. The window moves with an overlap of only 1
different measurement with each step. Given the degree of overlap,
a reasonable expectation is that proximal datasets will have similar
bootstrap estimates.

Stereoplots illustrate that substantial variations of deformation
band orientation exist for both the NE- and SW-dipping sets. The
sequentially bootstrapped means vary in an approximately 20�

range (Fig. 7a). The NE-dipping set varies substantially in the
horizontal plane (i.e. there is more variation in strike than dip),
whilst the SW-dipping set varies substantially in the vertical plane
(i.e. dip varies more than strike) (Fig. 7a). Fig. 8 shows that the
deformation bands in both the NE- and SW-dipping sets rotate
systematically as the location moves from east to west across the
cliff. NE-dipping deformation bands vary clockwise (looking down)
in a horizontal plane whereas the SW-dipping set becomes steeper,
with both showing changes of approximately 20�. By contrast, the
random bootstrapped means reveal two sets of tight clusters on the
NE and SW side of the stereonet respectively (Fig. 7b), which
approximately follow a Fisher distribution model (Fisher et al.,
1987). The results suggest that a smaller ‘moving window’ will
reveal more variable local estimates, which, as shown, remains
hidden in a larger ‘moving window’, although the trend from both
Figs. 7 and 8 are not sensitive to changing sampling size (Figs. 7a
and 8a–c), suggesting a fairly strong heterogeneity in the spatial
variation of the dataset. Given that both the orientation and
deformation band morphology change from east to west, single
deformation bands differ in orientation from band clusters.

3.3. Semivariograms

The semivariance, bgðhÞ is used to quantify the spatial correlation
for spatially distributed datasets and is the basis for all geo-
statistical methods (La Pointe and Hudson, 1985; Isaaks and
Srivastava, 1989).

bgðhÞ ¼ 1
2NðhÞ

X
jjxi�xjjjzh

������ZðxiÞ � Z
�
xj
����j2 (1)

where Z(xi) and Z(xj) are the observations at locality xi and xj,
respectively. NðhÞ describes the number of pairs of observations at
these localities separated by the lag h defined as kxi � xjk. Semi-
variograms generated by plotting h against bgðhÞ illustrate the
degree of spatial correlation in the data. For spatially heteroge-
neous datasets, closely spaced measurements are expected to have
a higher correlation compared to measurements spaced further
apart. In this study, it is important to define a suitable parameter to
represent the difference between two geographically separated
measurements, because the orientation data are bivariables and
can be illustrated as vectors distributed on a unit sphere. Hence, the



Fig. 7. Results of bootstrap analysis. (a) Sequentially bootstrapped means in the NE and SW set. Dashed lines are the preferred z20� variations observed for each set. Greyscale bar
indicates the sample size of the mean. (b) Randomly bootstrapped means in the NE and SW sets each with a tight cluster.

J. Guo et al. / Journal of Structural Geology 31 (2009) 628–636 633
difference between two measurements cannot be adequately rep-
resented by simply subtracting one from another. Instead, we use
the angular difference between the poles to fracture planes to
describe their dissimilarity (e.g. La Pointe, 1993). Equation (1) was
therefore modified for calculating the semivariance to reveal the
spatial correlation in the orientation dataset thus:

bgðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2NðhÞ

X
kxi�xjkzh

angular
�
ZðxiÞ; ZðxjÞ

�2

vuut (2)

where angular (Z(xi), Z(xj)) is the acute angle between the poles to
two fracture planes measured in the plane normal to their mutual
intersection; kxi � xjkzh represents any pairs of fractures sepa-
rated by the geographical distance h; N(h) is the total number of
pairs of fractures whose geographical distance is determined by
kxi � xjkzh. Semivariograms include several important features.
For example, as the separation distance between pairs of
measurements increases, the corresponding semivariance will also
generally increase. Eventually, an increase in the separation
distance no longer causes a corresponding increase in the semi-
variance and the semivariogram reaches a plateau. The distance
(lag h) at which the semivariogram reaches this plateau is called the
range. The plateau reached by the semivariogram at the range is
called the sill. When the semivariance reaches the sill, measure-
ments separated by the corresponding distance are no longer
spatially correlated. Finally, whilst the value of the semivariogram
Fig. 8. Spatial variation in deformation band orientation from the ‘moving window’ bootstra
cliff. A large number of bootstrapped orientations from a ‘moving window’ will be allocated
window bootstrapping’ as a function of window and sample size.
for h¼ 0 is strictly 0, several factors, such as sampling error and
small-scale variability, may cause sample values separated by
extremely small distances to be dissimilar. The jump from zero at
the origin to the semivariance at extremely small distances is called
the nugget effect (Isaaks and Srivastava, 1989)

The semivariance calculated from the deformation band orien-
tation data (Fig. 9) shows that the nugget effect for the whole
dataset (NE- and SW-dipping sets combined) is around 17�, sug-
gesting that fracture orientations measured close to each other vary
in the range of ca. 34� (i.e. twice the semivariance). This is
substantially larger than for each of the sets (NE- and SW-dipping)
where the average angular difference between two closely sepa-
rated fractures in the NE- and SW-dipping sets is about 19� and 23�

(twice their semivariance) respectively, showing that each set has
noticeable variation. As the deformation bands here are mutually
cross-cutting, these results can be interpreted to be the result of
locally developed multimodal brittle deformation (Fig. 4), (c.f.
Faulkner et al., 2006). The semivariance linearly increases with lag h
before reaching the limits where high fluctuations are due to a lack
pairs of measurements separated by a large distance (shown in the
shaded area in Fig. 9). It appears that the deformation bands have
a strong spatial correlation up to at least the 25 m scale.

3.4. Hierarchical analysis

To investigate the granularity effects in the orientation dataset,
we increased the size of sampling windows by combining our
p analysis. The greyscale bar shows the spatial location from the east to the west of the
the same grey when they are plotted on the stereonets. (a)–(c) Results of the ‘moving



Fig. 9. Semivariogram of the deformation band orientation. The distance (lag h)
separating any two measurements shows a strong positive correlation with semi-
variance. In the whole dataset, the nugget effect is z17�. In the NE- and SW-dipping
sets, the nugget effect is z9.5� and z11.5� . Shaded area is the region where the sill
and range are difficult to determine due to limited number of pairs of measurements.
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datasets into different sampling window sizes to form a hierarchy
of observations, from small (e.g. metre-scale) to relatively large
(tens-of-metre) scales (cf. Fig. 2). This analysis gives a tool to gain
insights into the spatial variation of the orientations over the
available scale-range. We chose 3 m, 5 m, 10 m and 20 m scales to
investigate the patterns of spatial variation in this 40 m long cliff.
Upscaling is realized by combining the original 1 m sampling
windows into progressively larger window sizes. Measurements at
3 m scale, for example, are simply a combination of three adjacent
Fig. 10. Results of the hierarchical sampling of the mean deformation band orientation. Da
mapped from the lower hemisphere projection to a 2D Cartesian coordinate frame. The sam
(lower number) to west (higher number). See Table 1.
1 m sampling windows. We can calculate the standard errors of the
mean from different windows of the same size to assess substantial
spatial variations at that scale.

Our results show that the trend in deformation band orienta-
tions are consistent from 3 m to 20 m scales in both sets (Fig. 10,
Table 1). Dashed lines on Fig. 10 highlight variations that are similar
in magnitude to the results of the sequentially bootstrapped means.
As the sampling window moves toward the western end of the
outcrop, the spatial variations in orientation are more variable at
3 m scales. At larger scales (10 m and 20 m), systematic spatial
variations exist in both sets: in the NE-dipping set, the mean pole to
the deformation band plane rotates progressively clockwise, whilst
in the SW-dipping set the mean pole rotates from a steeper to
a shallower plunge (Fig. 10).
4. Discussion

4.1. Spatial heterogeneity

Considering the entire population of orientations for the
deformation bands, a traditional approach would be to determine
the mean orientations of these two clusters and infer an Ander-
sonian conjugate set of bimodal shear fractures as a best approxi-
mation. Our sampling strategy of a moving 1 m sampling window
along a scanline with statistical analysis by bootstrapping, semi-
variogram plotting and hierarchical analysis demonstrate that such
an interpretation is too simplistic. The sampling reveals a change in
fracture geometry from single bands to band clusters westward
with a related density change at about 20 m along the scanline.
The bootstrapping and hierarchical analysis show a westward
systematic steeping of inclination for the SW-dipping bands, and
clockwise rotation of strike for the NE-dipping bands. The semi-
variograms show that these patterns of change are substantial for
distances of at least 25 m with increasing differences in fracture
ta points are the mean poles to the fracture planes for sample sizes of different areas
ple number of each point indicates the relative location along the outcrop from east



Table 1
The relation of the sampling window size and the spatial location. Numbers in the
first column are the relative location number as shown in the label to each point in
Fig. 10. The last four columns show the corresponding real locations along the
scanline at four different sampling scales.

No. Scale

3 m 5 m 10 m 20 m

Hierarchical sampling
1 0–3 m 0–5 m 0–10 m 0–19 m
2 4–7 m 5–10 m 10–20 m 19–38 m
3 7–10 m 10–15 m 20–30 m
4 10–13 m 15–20 m 30–38 m
5 13–16 m 20–25 m
6 16–19 m 25–30 m
7 19–22 m 30–35 m
8 22–25 m
9 25–28 m
10 28–31 m
11 31–34 m
12 34–37 m
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orientation as distance between sampled fractures is increased. The
combination of a systematic data collection protocol and three
statistical techniques was needed to detect important patterns in
the orientation data for the population of deformation bands. As
a result, our field observations suggest that the cross-cutting
deformation bands exhibit an orthorhombic symmetry. Such
patterns are more consistent with 3D non-plane strains (Reches,
1978; Aydin and Reches, 1982; Reches and Dieterich, 1983), which
are likely to be the main type deformation that occurs in the lith-
osphere (e.g. Dewey et al., 1998). Recent numerical modelling
supports orthorhombic symmetry as a predictable consequence of
the 3D interaction of mode I microcracks during the initial shear
fracture nucleation and growth in various rock types (Healy et al.,
2006a,b).

The deformation bands at the George Gill cliff section show
a systematic, east to west change in orientations, which was
revealed by applying bootstrapping and hierarchical analysis to
a sample population gathered using 1 m sampling windows along
a 40 m scanline. Fracture density increases sharply about 20 m
westward from the east end of the cliff section. We propose that the
density, orientation and fracture geometry changes with position
are due to the presence of a NW trending normal fault dipping to the
SW (Fig. 3 and 11). Equivalent changes in fracture orientations are
observed in other natural systems as one passes from the wall rocks
into the damage zones of larger faults (e.g. Faulkner et al., 2006) and
Fig. 11. Schematic diagram showing the observed systematic spatial variations in the orient
Postulated normal fault at west end of section is also shown.
lend support to the hypothesis that a larger fault lies close to the
west end of the outcrop in George Gill.
4.2. Scaling issues

The scaling of fracture properties can in principle be determined
quantitatively by comparing natural datasets with known, idealized
distribution models, such as fractal, log-normal, exponential, etc.
(Bonnet et al., 2001). Parameters such as fracture length, aperture
and throw are measured in terms of length and as a result the size
of the parameter can be directly related to the size of the sampling
scale. Typically, the population of parameter sizes is plotted
cumulatively versus the scale size for comparison to predictions
from idealized distribution models. Power-law distribution and
associated fractal geometry have yielded useful comparisons for
fracture system characterization (Bonnet et al., 2001). Fracture
orientation, on the other hand, has no direct intrinsic correlation to
length. This situation leads to a problem in sampling this property
in the field: how can an appropriate link between orientation and
scale be created? Fractures form in a specific orientation with
respect to the principal stress directions, but the orientation of the
principal stress directions that one infers depends on the scale of
observation (Tikoff and Wojtal, 1999). We therefore suggest that it
is most appropriate to use the term ‘granularity’ to describe this
hierarchical variation at different scales rather than the term
‘scaling’, because measurements of orientation are ‘scale-isolated’
and therefore have no direct relation to the length. Hence, to
understand the distributions of fracture orientations at different
scales, we define the window size independently (sampling or
analysis granularity) from the type of measurements being taken
(e.g. strike, dip, dip direction). Our approach here has been to
change the size of the analysis window as an indirect way of rep-
resenting the effect of a change of scale but we recognize that our
dataset was collected at a single level of granularity. Nevertheless,
we contend that averaging orientation data for a fracture pop-
ulation that display systematic spatial variations represents a type
of spatial aliasing. This approach could lead to erroneous conclu-
sions about the nature of the system and warrants further inves-
tigation. For example, such aliasing could mean that changes in
fracture orientations across fault zones may be missed by coarse
resolution fracture imaging methods such as seismic attribute
mapping. Our example shows that orientation data are not neces-
sarily scale invariant, such that sub-seismic scale fracture orienta-
tions could differ significantly from those at seismically imaged
scales.
ations of the bulk NE- and SW-dipping deformation band planes along the cliff section.
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Future work needs to define general statements that correlate
the relationship between fracture orientations and fracture sizes at
different scales. Qualitative field observations often suggest that, at
outcrop-scales, little or no obvious relationship exists between
fracture orientations and lengths. At a regional scale, however, this
relationship may become more obvious, as major faults often
appear to control the bulk orientation of nearby fracture zones.
Such granularity in sampling the fracture orientations relating to
the distribution of fracture size is an interesting issue that requires
further study. It is not easy, however, to analyse the orientation
datasets relative to their spatial positions, especially for datasets
where the outcrops are of limited size, such as for the case study
presented here. Ideally, it would be useful to quantify fracture
orientations from outcrop to regional scales, because interpolation
technique can be developed that estimates fracture orientation
values based on limited observations. This approach applies not
only to fracture networks on the surface, but also to those found in
the subsurface. Flat pavements covering a large area, or long
straight cliffs with simple fracture distribution patterns should
represent ideal field areas to conduct such further studies.

5. Conclusions

The anastomosing deformation bands on the cliff at George Gill,
Appleby, N. England show substantial spatial heterogeneity in their
orientations. This heterogeneity is likely to have been controlled by
the development of a NW–SE trending, SW-dipping normal fault
adjacent to the cliff section. Multimodal fracture sets are developed
locally and their orientation changes with position across the
outcrop explaining the apparent change from bimodal to multi-
modal orientation distributions when downscaling from tens of
metre-to-metre scales. Quantifying spatial variation in fracture
orientation is key to understanding the geometry and connectivity
of 3D fracture networks. The present study represents one of the
first systematic accounts of the spatial heterogeneity of natural
fracture orientations, and illustrates that a great deal more work
remains if we are to be able to describe and accurately predict the
complete fracture system in three dimensions.
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